746. Infrared Absorption of Heteroaromatic and Benzenoid Sixmembered, Monocyclic Nuclei. Part IX. ${ }^{1}$ ortho-Disubstituted Benzenes.

By A. R. Katritzky and R. A. Jones.

Abstract

Absorption due to the ortho-disubstituted benzene ring for 45 compounds is recorded and discussed.

Following our work on para- ${ }^{2}$ and meta-disubstituted benzenes, ${ }^{1}$ we now report on 45 ortho-compounds. The object of the work, the conditions of measurement, the regions of the spectrum investigated, and the arrangement of the Table have been discussed, ${ }^{2}$ as has the classification of substituents, into donor (d), acceptor (a), halogen (x), and weak (w), on the basis of their electronic effects. ${ }^{2}$

Randle and Whiffen ${ }^{3}$ treated statistically the spectra of many ortho-disubstituted benzenes and listed arithmetic means and standard deviations for eleven bands in the $1600-800 \mathrm{~cm}^{-1}$ region (see below), which they assigned on the basis of earlier work on both Raman and infrared spectra (the assignments in this paper are as in ref. 3). However, they obtained data from many sources, measured under varying conditions, and were unable to give any indication of quantitative intensities or to relate the intensity or position of bands to the nature of the substituents.

Ring-stretching Frequencies at ca. $1600-1400 \mathrm{~cm} .^{-1}$.-Four bands occur in this region corresponding to the vibration modes (I-IV). The first band (I) (col. 1) occurs at 1576-

(I)

(II)

(III)

(IV)
$1570 \mathrm{~cm} .^{-1}$ when the substituents are two halogen atoms, at $1602-1591[1595 \pm 5] \mathrm{cm} .^{-1}$ where one of the substituents is a halogen atom, and at $1624-1591[1607 \pm 9] \mathrm{cm}^{-1}$ otherwise.*

$d a$	$d d, d x, x a$	$d w, w a, a a$	$x x, x w, w w$
$(140-330)$	$(60-150)$	$(15-65)$	$(10-25)$
$[210 \pm 60]$	$[90 \pm 25]$	$[40 \pm 15]$	$[20 \pm 7]$

The intensity varies with the substituents in a manner intermediate between that shown by para-substituted benzenes (where the intensity varies as the difference in the electronic effects of the substituents) and that shown by meta-substituted benzenes (where the intensity varies as the sum of the electronic effects of the substituents). ${ }^{1,2}$

Many of the compounds show a second band (II) (col. 2) at 1593-1578 [1587 $\pm 5] \mathrm{cm} .^{-1}$ for $d a$ compounds (except No. 21) and at $1584-1571[1577 \pm 4] \mathrm{cm} .^{-1}$ otherwise. The intensity is (90-300) [(140 $\pm 65)]$ for $d a$ compounds, (20-85) [(40 $\pm 20)]$ for $a a, x w, x a$, and wa compounds; for other compounds the band is found only as a shoulder or not at all.

A third band (III) (col. 3) occurs at $1514-1452 \mathrm{~cm} .^{-1}(20-460)$; both position and

$d d$		$d w$		$w w, d a, w a$		$x a, x w$		$x x$
$\begin{aligned} & 1514-1505 \\ & {[1508 \pm 4]} \end{aligned}$	$>$	$\begin{aligned} & 1503-1495 \\ & {[1500 \pm 4]} \end{aligned}$	>	$\begin{aligned} & 1498-1458 \\ & {[1487 \pm 5]} \end{aligned}$		$\begin{aligned} & 1478-1466 \\ & {[1470 \pm 5]} \end{aligned}$		$\begin{aligned} & 1460-1452 \\ & {[1455 \pm 4]} \end{aligned}$

[^0]Monocyclic Nuclei. Part IX.

Donor-acceptor	$\begin{gathered} 1 \\ A_{1} \\ \nu C C \end{gathered}$			$\underset{\substack{B_{1} \\ \nu C C}}{ }$		$\begin{gathered} \stackrel{3}{4}_{A_{1}}^{\nu C C} \end{gathered}$		$\begin{gathered} \stackrel{4}{B_{1}} \\ \nu C C \end{gathered}$		$\begin{gathered} 5_{1}^{B_{1}} \\ \beta \mathrm{CH} \end{gathered}$			$\begin{gathered} 7_{1}^{7} \\ \beta \mathrm{BH} \end{gathered}$		$\begin{gathered} A_{1}^{8} \\ \beta \mathrm{CH} \end{gathered}$		$\stackrel{9}{\stackrel{9}{\mathrm{C}}} \underset{\gamma}{ }$		
		cm. ${ }^{-1}$	ε_{A}	cm. ${ }^{-1}$	ε_{1}	m. ${ }^{-1}$	$\varepsilon_{\text {A }}$	cm. ${ }^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1} \mathrm{E}_{\boldsymbol{A}}$	cm^{-1}	$\varepsilon_{\text {A }}$	cm. ${ }^{-1}$	ε_{Δ}	cm. ${ }^{-1}$	ε_{Δ}			n^{-1}
$21 \mathrm{NH}_{2}$	$\mathrm{CO}_{2} \mathrm{Me}$	1592	240	1564	130	1490	90	1458	75	$(-)$					1027	15			
$22 \mathrm{NH}_{2}$	NO_{2}	1587*	125	1578	180	1483	40	1445	180	$(-)$	$\left\{\begin{array}{l}1168 \\ 1157\end{array}\right.$								
$23 \mathrm{NH} \cdot \mathrm{COMe}$	NO_{2}	1613	230	1591	300	1458	150	1437	300	$(-)$	\{ 11147	${ }^{65}$	-		1040	25	956	15	20
24 OM	сно	1604	330	*	60	1488	210	$1443 \ddagger$	90	$(-)$	1163	145	1104	50	1044	65	93		-)
25 OMe	NO_{2}	1613	200	1588	90	1493	85	1456*	40	$(-)$	$\left\{\begin{array}{l}1184 \\ 1165\end{array}\right.$	${ }_{70}^{25}$	1147	25	$\left\{\begin{array}{l}1055 \times \\ 1045\end{array}\right.$	${ }_{35}^{20}$			$(-)$
${ }^{26} \mathrm{OH}$	$\mathrm{CO}_{\mathrm{CO}}^{\mathrm{M}} \mathrm{Me}$	1618	190	1589	120	1490 1489	${ }_{360}^{300}$	$1446 \ddagger$		$\stackrel{(-)}{-}$	1160	310	$(-)$		1033	75	$(-)$		846130
${ }_{28}^{27} \mathrm{OH}$	${ }_{\text {COFer }}$	${ }_{1624}^{1616}$	195	${ }_{1584}^{1589}$	100	${ }_{1491}^{1489}$	140	1464		$(-)$		170	${ }_{1114}^{113 *}$	${ }_{25}^{30}$		${ }_{40}^{75}$			815 35 858 10
29 OH	сомe	1620	140	1584	90	1490	140	1452	165	$(-)$	1159	120	1129	10	$\{1032$	30	$944 *$		
30 OH	NO_{2}	1620	240	$\left\{\begin{array}{l}1593 \\ 1577 *\end{array}\right.$	160	1479	260	1457	150	$(-)$	1161	60	1115*	15	1027	60	950	10	$815 \quad 25$
Halogen-acceptor																			
	$\mathrm{CO}_{2} \mathrm{Me}$	1596	65	1580*	15	1478	50	$1439 \ddagger$		1273* 140	1163	20	(-)		1040	50			
32 Br	$\mathrm{CO}_{3} \mathrm{Me}$	1594	80	${ }_{1571}^{157}$	25	${ }^{1474}$	60	14387		1270* 150	1164	15	(-)		1044	85			
33 Cl	CHO	1595	150	1571	30	1466	40				1160	15	1115	15		40			
${ }_{34}^{34 \mathrm{Cl}}$	NO_{2}	1593	110	1585*	75	1	${ }_{60}^{60}$	$\xrightarrow{1444}$	${ }_{10}^{20}$	$\begin{array}{ll}1260 & 20 \\ 1256\end{array}$			1131	20	${ }_{1035}^{1035}$	10		10	
35 Br	NO_{2}	1590	110	$(-)$		1468	60	1438	10	125620					$1035 \dagger$	50	945	10	
Weak-acceptor																			
		1608		1576	85 50	${ }_{1481}^{1481}$				$1278 * 220$ $1275 * 130$				${ }_{25}^{25}$		60	${ }^{35}$	15	
${ }_{38}^{37} \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{NO}^{\mathrm{NO}}$	1608	${ }_{3}^{35}$	1576	50	1480 1494	${ }_{25}^{30}$			${ }_{1288}^{1275 *}{ }_{20}$			1143*	25	$\stackrel{(-)}{ }$				
38 CH 39	$\mathrm{CN}_{\mathrm{CN}}$	1606	${ }_{30}^{15}$			1491	65	${ }_{1446} 14$		${ }_{1292}^{1288}$	${ }_{1163}^{165}$	15	1108	20	1043	15			
40 Me	$\mathrm{CO}_{2} \mathrm{Me}$	1604	40	1578	25	1490	35	$(-)$		1287* 110	1164	25	$\left\{\begin{array}{l}1142 \\ 1135\end{array}\right.$	70	1051	25		20	
${ }^{41} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Et}$	1604	30	1578	20	1490	30	(-)		1280* 110	1165*	40	$\left\{\begin{array}{l}1142 \\ 1135\end{array}\right.$	80	1051	35	999	40	
42 Me	NO_{2}	1616	55	1582	35	1486	40	1433	25	$1278 \quad 20$	1163	20	1148	20	1049	10	950	10	
Acceptor-acceptor																			
${ }_{43} \mathrm{CO}_{2} \mathrm{Me}$		1602		1582		1491													
${ }_{45}^{44 \mathrm{CO}_{2} \mathrm{Et}}$	$\mathrm{CO}_{2} \mathrm{Et}$	${ }_{1604}^{1608}$	${ }_{35}^{45}$	1584	${ }_{40}^{45}$	${ }_{1485}^{1492}$		1448^{*}	${ }_{55}$	$\stackrel{(-)}{(-)}$			$(-)$						
${ }_{46} \mathrm{CHO}$	NO_{2}	1607	${ }_{25}$	${ }_{1576}^{1580}$	${ }_{55}^{40}$	${ }_{1477} 148$	15	${ }_{1449}^{148}$	${ }_{40}^{50}$	$\stackrel{(-)}{(-)}$	1162^{*}						${ }_{960}{ }^{(-)}$	10	

intensity can be correlated with the substituent type. The position is raised by donor substituents and lowered by halogen substituents. In general, the intensity is raised by donor or halogen substituents, as shown; but the intensity is irregular (40-300) [$(170 \pm$ 80)] in $d a$ compounds. In other series it has been found that donor substituents raise the intensity of the corresponding band. ${ }^{1,2}$

$$
\begin{gathered}
\begin{array}{c}
d d, d x \\
(175-440) \\
{[(280 \pm 80)]}
\end{array} \\
\hline(110-170) \\
{[(145 \pm 30)]}
\end{gathered}>\begin{array}{cc}
d w, x w \\
(65-90) \\
{[(80 \pm 10)]}
\end{array}>\begin{gathered}
w w, x a, w a, a a \\
(25-60) \\
{[(40 \pm 15)]}
\end{gathered}
$$

The fourth band (IV) (col. 4) is found at $1473-1460[1467 \pm 6] \mathrm{cm}^{-1}$ for compounds of the $d d$ and $d w$ classes and otherwise at $1464-1432[1447 \pm 10] \mathrm{cm}^{-1}$. The intensity is high $(75-300)[(170 \pm 90)]$ for $d a$ compounds, but otherwise shows only random variations ($10-80$) $[(50 \pm 20)]$.

Randle and Whiffen reported ${ }^{3}$ these four bands at 1609 ± 10 (var), 1575 ± 9 (var), $1490 \pm 11(\mathrm{~s})$, and $1445 \pm 8(\mathrm{~s})$; these positions are in good overall agreement with our more precise data.

In-plane CH-Bending Vibrations at ca. 1300-1000 cm..$^{-1}$.-Four bands corresponding to the modes (V-VIII) occur in this region. The first band (V) (col. 5) is frequently

(V)

(VI)

(VII)

(VIII)
obscured by substituent absorption, but occurs as a discrete band at $1292-1252 \mathrm{~cm} .^{-1}$ ($10-25$) $\left[1269 \pm 17 \mathrm{~cm} .^{-1}(15 \pm 5)\right]$ in $x x, x a$, and wa compounds.

The position of the second band (VI) (col. 6) is $1168-1150[1160 \pm 4] \mathrm{cm}^{-1}$ except for four compounds of the donor-donor class (Nos. 2-5) where it occurs at 1181-1174 $\mathrm{cm} .^{-1}$. The band is absent for $x x, x w$, and ww compounds, and is of intensity (20-145) $[(70 \pm 45)]$ for $d d$ compounds, $(60-360)[175 \pm 95]$ for $d a$ compounds, and (5-40) $[(20 \pm 10)]$ otherwise.

The third band (VII) (col. 7) is absent for compounds of the $d d, d w$, and $a a$ classes but otherwise occurs at $1148-1103 \mathrm{~cm} .^{-1}(5-65)\left[1125 \pm 14 \mathrm{~cm} .^{-1}(25 \pm 15)\right]$ except that the intensity is higher ($70-115$) for the $x x$ compounds and certain esters (Nos. 40, 41, 44).

The fourth band (VIII) (col. 8) occurs at $1056-1011 \mathrm{~cm}^{-1}(5-170)[(50 \pm 40)]$. The position is $1051-1034[1040 \pm 6] \mathrm{cm} .^{-1}$ for $d w, x w, x a$, wa, and aa compounds, $1045-1017$ $[1033 \pm 8] \mathrm{cm} .^{-1}$ for $d d$ and $d a$ compounds, and $1027-1011[1018 \pm 7] \mathrm{cm} .^{-1}$ for $d x, x x$, and ww compounds.

(IX)

(X)

(XI)

(XII)

Randle and Whiffen ${ }^{3}$ found the last three of these bands at $1159 \pm 7(\mathrm{~m}), 1126 \pm 12$ (m), and $1031 \pm 5(\mathrm{~s}) \mathrm{cm} .^{-1}$, respectively, in reasonable agreement with our results.

Out-of-plane CH-Bending Vibrations below $1000 \mathrm{~cm}^{-1}$. -Four modes (IX-XII) are expected. Most of the compounds show weak absorption for the $1000-900$ and the $900-800 \mathrm{~cm} .^{-1}$ region (cols. 9 and 10) which are probably due to some of these modes. For the $1000-900 \mathrm{~cm} .^{-1}$ region most types of compound show a band at $960-935[948 \pm 7]$
$\mathrm{cm} .^{-1}$ ($10-15$), but $d d$ type show instead a band at $916-906 \mathrm{~cm} .^{-1}(10-25)$, and $d w, x w$, and ww types show only a band at $996-980 \mathrm{~cm} .^{-1}$ ($10-15$). About half the compounds show a band in the $900-800 \mathrm{~cm} .^{-1}$ region.

Randle and Whiffen found ${ }^{3}$ that the " umbrella " mode (XII) caused a strong band at $751 \pm 7 \mathrm{~cm} .^{-1}$ which would be obscured by solvent absorption in our work. They tentatively assigned bands at 977 ± 9 (w), $934 \pm 11(\mathrm{w})$, and $865 \pm 14(\mathrm{w}) \mathrm{cm} .^{-1}$ to the other modes (IX-XI).

Other Bands.-Nearly all the remaining bands, $\varepsilon_{\mathrm{A}}>10$, could be assigned to substituent absorption; the following were exceptions: 1140 (45), 1070 (35) in No. 2; 1479 (50) in No. 12; 1486 (25), 1472 (35) in No. 14; 1143 (15) in No. 15; 1140 (15) in No. 16; 1340 * (35) in No. 21; 1091 (35) in No. 25.

Experimental.-The compounds were commercial products or were prepared by standard methods; all were recrystallised or distilled immediately before measurement and had melting or boiling points in agreement with values in the literature.

The spectra were measured on a Perkin-Elmer 21 Spectrophotometer with a NaCl prism and the setting previously reported. ${ }^{4} \quad \varepsilon_{\mathrm{A}}$ values were calculated as before. ${ }^{5}$

This work was carried out during the tenure by one of us (R. A. J.) of a D.S.I.R. grant.
The University Chemical Laboratory, Cambridge.
[Received, April 9th, 1959.]
${ }^{4}$ Katritzky, Monro, Beard, Dearnaley, and Earl, J., 1958, 2182.
5 Katritzky and Lagowski, J., 1958, 4155.

[^0]: * Parentheses indicate apparent molecular extinction coefficients, and square brackets arithmetic means and standard deviations. The intensities of shoulders and superimposed bands and the position of shoulders are not treated statistically.
 ${ }^{1}$ Katritzky and Simmons, $J ., 1959,2058$.
 ${ }^{2}$ Idem, J., 1959, 2051.
 ${ }^{3}$ Randle and Whiffen, Paper no. 12, Report on Conference of Molecular Spectroscopy, 1954, Institute of Petroleum.

